y=ln[(x+1)(2x-1)]

Simple and best practice solution for y=ln[(x+1)(2x-1)] equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y=ln[(x+1)(2x-1)] equation:


Simplifying
y = ln[(x + 1)(2x + -1)]

Reorder the terms:
y = ln[(1 + x)(2x + -1)]

Reorder the terms:
y = ln[(1 + x)(-1 + 2x)]

Multiply (1 + x) * (-1 + 2x)
y = ln[(1(-1 + 2x) + x(-1 + 2x))]
y = ln[((-1 * 1 + 2x * 1) + x(-1 + 2x))]
y = ln[((-1 + 2x) + x(-1 + 2x))]
y = ln[(-1 + 2x + (-1 * x + 2x * x))]
y = ln[(-1 + 2x + (-1x + 2x2))]

Combine like terms: 2x + -1x = 1x
y = ln[(-1 + 1x + 2x2)]
y = [-1 * ln + 1x * ln + 2x2 * ln]
y = [-1ln + 1lnx + 2lnx2]

Solving
y = -1ln + 1lnx + 2lnx2

Solving for variable 'y'.

Move all terms containing y to the left, all other terms to the right.

Simplifying
y = -1ln + 1lnx + 2lnx2

See similar equations:

| -3(m+2)-m-5=-4(m+5)+9 | | b+-11=3 | | 8x-24-15+18=4x+4-36+6x+25 | | 0.6x-0.6(5-x)=4.8 | | -10+b=-9 | | -37-(-33)= | | -7v-4=38 | | x^4-3ix^2-2=0 | | 15-b=15 | | -16=-20-4k | | 5=-5x-5(-3x+9) | | (x)(8)-13=43 | | 4(2x-6)-3(5-6x)=4(x+1)-6(6-x)+25 | | x-100/7=1.9 | | b+-79=-99 | | (x)(5)-7=53 | | (10-6)/(x/5)=-4 | | 7x-3(3-x)=2 | | 6(9+5x)=414 | | 3q+5=-16 | | 8x^2+6(14-12)= | | b+-2=-1 | | 4(z-15)=11 | | 23-19=2(c-5) | | -5-b=-7 | | y=10ln(x^2-1) | | 3/((3-1)/x)=4 | | 4(5x-3)+8=-2 | | 5-4m=56 | | 2-b=8 | | 2x+25+3x=5+3x+7x | | 36+4y-8=12y-14-2y |

Equations solver categories